Pages Menu
Categories Menu

Posted in Top Stories

Early Detection of C-RES Degradation on High-Current Power Planes

By Brent Bullock, Advantest America Inc.

Probe-card or device contactor damage can be dramatic and catastrophic, with yield dropping drastically very quickly. What is not dramatic is the hypothesized slow probe needle or contactor degradation process that might precede catastrophic failure. Such degradation is difficult to detect in the early stages, when probe cards, die, and packages continue to yield normally. A key goal is to detect this degradation as soon as possible to avoid catastrophic damage without incurring yield loss or unnecessary equipment downtime. A related goal is to determine the root-cause scenarios that cause damage to probe needles or contactors.

Measuring contact resistance

One possibility for detecting the onset of probe or contactor degradation is to measure contact resistance (C-RES). This measurement can be accomplished by taking equipment offline, which also allows visual inspection of probe tips. This approach, however, thwarts the goal of minimizing downtime, and it provides limited insight into the root causes of failures—for example, it cannot determine what test sequences were running when a failure occurred. 

Low-current C-RES measurements are valuable, given uniform planarity with clean probe needles. For example, uniform C-RES changes will correlate between I/O pins and large VDD power planes, regardless of pin type (Figure 1, top). However, C-RES can be nonuniform because of particles, needle warpages, device contact defects, or other anomalies affecting a few pins. Unfortunately, low-current measurements cannot detect subtle changes in C-RES for a small percentage of pins isolated within large power planes, rendering nonuniform C-RES issues within large VDD planes unobservable on I/O pins (Figure 1, center). This limitation can be overcome by improving measurement granularity, taking measurements at higher current levels, or combinations of the two.

Figure 1. Probes can exhibit uniform (top) or nonuniform (center) planarity, and sub-gang measurements (bottom) can provide adequate resolution to detect anomalies in the latter.

Sub-gang measurements

One approach to improving C-RES measurements despite nonuniform contact problems is to take advantage of the fact that a VDD power plane is likely to be powered by multiple power-supply channels. The multiple channels allow sub-gang per-channel measurements that can provide sufficient granularity to detect C-RES variances with adequate resolution (Figure 1, bottom). For example, Advantest’s EXA Scale generation of instruments for the V93000 platform includes power supplies, digital comparators, and data converters (Table 1) that can discern C-RES variations between channels.

Table 1. Exascale instrument capabilities and specifications

EXA Scale instruments can determine C-RES by measuring the voltage drop (vDrop) across the probe head for a given measurement current. vDrop can be measured and recorded at a specific point in time or averaged over multiple points in time. This approach may require additional test time, and, similar to off-line measurements, it provides limited insight into the root causes of failures.

Monitoring vDrop

A better approach involves the monitoring of vDrop using continuous ADC sampling and the triggering of an alarm when significant C-RES anomalies occur. This approach has the added advantage of pinpointing what test sequences were executing during significant C-RES changes, thereby facilitating root-cause analysis. Figure 2 shows the XHC32 ultra-high-current power supply configured to provide such continuous monitoring of the C-RES values on both the VDD and VSS sides of the die. This approach requires an extended sense line, which must be added during DUT board design, in addition to the primary sense line.

Figure 2. An XHC32 extended sense line monitors the delta value relative to the primary sense line.

Advantest’s SmarTest ATE software includes a feature that facilitates the programming of the extended monitoring and alarm functions in either interactive or API modes. Figure 3 shows results with per-channel ganging granularity, initiated by checking the perPogo box in the instrument view (left). Data for each channel is shown on the right, with the highlighted channel showing a significant anomaly in measured current. To further control the ganging granularity, Advantest offers a capability called Ganged on the Fly dynamic master-channel switching, which is useful for changing the master sense line when the IR drop across a power plane varies with test content. The capability supports unique signal names for desired master-channel scenarios.

Figure 3. Checking the perPogo box in the instrument view (left) enables the display of per-channel results (right).

Measurement results and comparisons

Figure 4 shows actual waveform results, with the extended vDrop profile shown in blue and the current shown in yellow. Extended vDrop scales with the current flow, with capacitor charge/discharge cycles inducing transient variations. 

Figure 4. The extended vDrop value (blue) scales with current (yellow), with capacitor charge/discharge cycles inducing transients.

Figure 5 shows the extended vDrop and current values shown in Figure 4 converted to power (brown) and C-RES (blue) values, with C-RES impacted by device contacts as well as the probes. The conversion is part of Advantest’s new contact rating feature, which eliminates the issue of having to adjust for power, reducing engineering workload.

Figure 5. The brown and blue traces represent power and C-RES, respectively, derived from the voltage and current traces in Figure 4.

Figure 6 shows vDrop measurement trial data for two equipment setups A and B, which each have induced variations in the equipment and known variances in DUT contact quality. Measurements were taken for three separate tests, with each test performed four times, once for each of the two setups using the lower power Core Supply A and once for each of the two setups using the higher power Core Supply B. 

As shown in the figure, tests run on each setup using the low-power Core Supply A yield very similar results. For example, the measurements at the left of the Core Supply A results show that test 264 run on Equipment Setup A (Series 1) and the same test run on Equipment Setup B (Series 2) yield nearly identical measurements, making it difficult to draw inferences about C-RES variations. In contrast, the results for the same test run on the same two setups using the higher power Core Supply B are clearly distinguishable, demonstrating improved capability for vDrop measurements, and hence C-RES measurements, when utilizing currents that represent a higher percentage of total CCC.

Figure 6. Measurements taken with the lower power Core Supply A (left) and the higher power Core Supply B (right) show that the higher power supply provides improved capability for distinguishing C-RES variations.

Summary

Extended vDrop measurements can detect test-cell variations but have limited potential for isolating root causes of probe failures. In contrast, extended vDrop monitoring with alarm functionality is effective at detecting C-RES degradation, and because the monitoring is continuous, it is also effective in determining the root causes of the degradation—for example, test program sequences that may inadvertently apply too much current.

The implementation of vDrop monitoring requires planning because C-RES measurement or monitoring is not possible without proper routing, and the required extended sense lines must be designed into the DUT board. For the best results, retain the primary sense lines in the same location used for previous designs and add the extended sense lines on the opposite side of the die or contactor. Advantest offers the instruments and software necessary to implement extended vDrop monitoring and is performing additional work to automate the process of setting adaptive current clamp and vDrop alarm limit values.

Read More

Posted in Top Stories

AI Semiconductors Require an Integrated Test Solution

By GO SEMI & BEYOND Staff

The rapid proliferation of generative pre-trained transformers based on large language models (LLMs) is driving growth in the market for chips that can run the LLMs and other artificial intelligence (AI) and machine learning (ML) applications. Several types of chips hold promise for accelerating AI computing. Graphical processing units (GPUs) have proven to be capable solutions for the server/cloud environment, although work is underway on dedicated AI chips that could offer higher efficiencies. Edge applications will require lower-power devices, such as neuromorphic chips, which mimic neural network behavior. Personal computers are also gaining AI capabilities as chipsets appear to accelerate AI program execution without requiring cloud resources.

AI chip market

Research firms see a booming market for these AI-capable chips, although the exact numbers remain unclear because of the variety of classes of the devices. Mordor Intelligence forecasts that the market for GPUs will grow from about $65.3 billion in 2024 to $274.2 billion in 2029, driven by both graphics and AI applications. For its part, Gartner forecasts that worldwide AI chip revenue will increase from $53.4 billion in 2023 to $119.4 billion in 2027. Future Market Insights takes a longer look and forecasts that the AI chipset market will increase from $27.6 billion in 2024 to $287 billion in 2034—a CAGR of 26.4%. Deloitte puts the market for specialized chips optimized for generative AI at more than $50 billion in 2024, representing two-thirds of all AI chip sales during the year.Market.us surveys the complete global AI chip market, including GPUs, and estimates it is growing at a CAGR of 31.2% and reaching $341 billion in 2033.

Finally, as AI comes to the home and business desktop, personal computers will increasingly include dedicated chipsets that can accelerate AI computing, executing AI applications without requiring cloud connectivity. Canalys predicts that 60% of PCs shipped in 2027 will be “AI-capable,” up from 10% in 2023.

AI chip characteristics and test challenges 

The diverse classes of chips applicable to AI computing present unique test challenges, but several are common to most of them. For example, increases in device complexity are causing an explosion in scan-pattern depth, with pattern depths moving from what used to be a doubling every three years toward increasing tenfold every three years. Such growth necessitates new ATE technologies as well as the use of more efficient test data distribution schemes inside the device for higher throughput and parallel test of multiple cores.

The test flow for AI-enabled chips remains similar to that for traditional devices. Key stages in the flow include post-silicon validation, wafer acceptance test, wafer sort, final test, burn-in, and system-level test (SLT).

However, test-flow stages must become dynamically adaptable with real-time decision-making to minimize the cost of the test (COT), maximize yield, and facilitate dynamic failure analysis. In addition, test must occur in accordance with specific application requirements because scan testing exhaustively is becoming too expensive. Consequently, functional test content is moving forward in the flow in order to focus the valuable test time on the best parts. Additionally, binning must move from the performance-based approach of traditional test to an application-based approach that facilitates die matching (harvesting and smart pairing).

The dynamically adaptable test flow requires the seamless sharing of data across multiple test insertions and throughout the manufacturing process. It is also necessary to correlate behavior across insertions—to predict from a wafer-test result what will happen at future insertions, for example, and to identify defects before packaging.

Products and Services for AI chip test

Advantest offers a full lineup of test solutions for AI-capable chips that perform high-quality, cost-effective tests at high throughput. These platforms feature a module-based architecture that enables flexible reconfiguration of test modules to meet the ever-expanding list of test methods and applications.

In addition to the test platforms, Advantest offers associated equipment ranging from die-level handlers and thermal controllers to test-interface boards. In the handler and thermal-control category, Advantest provides the HA1200 die-level handler to support the test of singulated or partially assembled die. Equipped with Advantest’s ATC advanced thermal control option, the HA1200 enables known-good-die (KGD) testing of high-power, high-performance AI-capable devices within a thermal environment similar to their final assembly location. Testing in this fashion helps ensure true KGD for parts shipped in die form, chiplets, and large AI components that use back-side power delivery.

The company also offers an ATC 2kW solution for its M487x handler series to provide advanced thermal control at final test. Rounding out the hardware offerings from Advantest are high-performance DUT boards, test sockets, and thermal-control units, which accommodate very large form factor devices, including ones with coaxial electrical interfaces.

Advantest SLT and burn-in systems also provide a variety of thermal options to accommodate these large packages and high-power devices. These SLT thermal solutions include but are not limited to, active cooling and heating with fast dynamic response to maintain setpoints without overheating the DUT.

To handle the compute-intensive aspects of chip production and test, Advantest offers Advantest Cloud Services (ACS), which provide data management and analytics to pull together data from across the value chain. Included in ACS is Advantest’s ACS Real-Time Data Infrastructure (ACS RTDI) platform, which collects, analyzes, stores, and monitors semiconductor test data in a True Zero Trust security environment to enable customers to convert insights into actionable steps while protecting IP. In addition, the company’s ACS Edge platform can work in conjunction with Advantest’s platforms to handle computationally intensive workloads locally without loading down the test program or requiring cloud intervention. This addresses the growing industry need to run advanced, complex analytics at multiple test insertions while achieving very low and predictable latency.

Scan test

For scan test, the tester must efficiently move scan data in and out of the DUT. Test patterns must be deployed at the KGD testing step as well as at the final test of the complete heterogeneously integrated device. To accommodate tenfold pattern depth increases, testers require much greater memory depth. To meet this requirement, Advantest offers the Pin Scale 5000, which has multiple giga vectors per pin at up to 5 Gb/s.

Compression and memory pooling can scale this capacity significantly, either per pin or across multiple pins.

Some devices already require terabits of scan-pattern test data. Depending on the scan architecture, the available I/O speed, and the number of I/Os available for scan test, it can take many minutes to run a comprehensive scan pattern set on a very large device, which leads to high test cost and low throughput. As an alternative, a device’s native PCIe interface running at 16 Gb/s (with future versions moving to 32 Gb/s and 64 Gb/s) can also transport scan test data if the device-internal DFT supports it. To enable the use of PCIe or other serial interfaces, Advantest offers the Link Scale digital channel cards for the V93000 platform that enable software-based functional testing and PCIe (or USB) scan testing. Coupled with the latest generation of on-die scan data distribution networks, Link Scale can provide an order of magnitude faster pattern execution compared to traditional approaches. Alternatively, Advantest’s SLT and burn-in systems can utilize the same device-internal DFT and our controllers’ PCIe or USB interfaces to execute the same SCAN patterns that were generated for use on the V93000 Link Scale solutions. SLT and burn-in systems typically are less expensive per test site but run for much longer durations.

Power requirements 

The tester must also deliver sufficient power to the DUT while preventing overheating. Some devices are already drawing over 1,500 A, with future plans for 2,500 A and more, so controllability of the power resources is critical, requiring precise regulation, fast clamping capability, and in-line monitoring of contact resistance. In addition, supply voltages are being reduced from 1 V down to 750 mV, 600 mV, and even 500 mV. Each voltage drop requires higher accuracy. Power supplies must also be simple and flexible, enabling system configuration without buying more resources than needed.

To meet test power-supply requirements, Advantest now offers the XHC32 high current power supply for the V93000, which delivers up to 640 A per card and is an ideal complement to the widely used XPS256 universal power supply. Both cards feature digital regulation, fast clamp response, extended profiling capabilities, and state-of-the-art protection features for probe cards and sockets. In combination, they serve the needs of power-hungry performance digital devices for years to come. For our SLT and burn-in test cells, a similar power is available to each DUT in a highly parallel environment.

Scan and power requirements, taken together, have implications for multisite test as DUT pin counts vary. Scan port width may vary from tens of pins to hundreds of pins, and power requirements are constantly increasing. Bandwidth requirements for test data transmission greatly increase in parallel. Very large devices combining multiple dies in one package are also becoming increasingly prominent, especially in the HPC segment. As these chips have large numbers of I/Os, real estate on existing DUT boards is not always sufficient to accommodate all the external components required for test, especially in multi-site setups. The new DUT interface DUO available on the V93000 helps with this by significantly increasing the available space for large DUT interface boards while maintaining compatibility with existing DUT boards.

Boot-up and system-like test

In addition to scan and functional test, the tester must confirm that the chip meets its intended requirements for AI applications, such as object recognition. This level of testing requires DUT boot-up and execution of software on the DUT during the test insertion, which is typically performed during SLT. Interfaces such as PCIe are suitable not only for scan but also for the exchange of large amounts of data that would enable a chip to run a convolutional neural network or similar application. Boot-up sequences and interfaces such as PCIe can present fundamental problems that, if found only at SLT, impose significant time and cost issues for parts destined for heterogeneous integration.

To avoid these issues and to shift the boot-up test left, Advantest offers system-like test™ technology, which can help shift boot and other SLT content to wafer probe. Link Scale can alternatively act as a source of data, providing a data array for an AI processor.

Machine-learning driven test

And finally, Advantest is also leveraging ML to test ML-capable devices. The company has demonstrated test time and cost reduction using intelligent prediction from ML models. Customers with strong in-house data-science teams can develop similar models and run them on Advantest’s infrastructure. Advantest is continuously investigating AI-based methodologies to support its customers.

Table 1. Advantest products and technologies for AI-enabled chip test

Conclusion

As we step into the AI-driven future, the complexity of testing AI-enabled chips intensifies, marked by significant increases in test-data volumes and challenges related to heterogeneous packages with restricted access. Advantest is at the forefront of addressing these challenges with its robust portfolio (Table 1) of cutting-edge test hardware and sophisticated cloud-based services. Leading this transformative era, Advantest ensures its customers consistently remain on the leading edge of technology. By not only meeting today’s stringent demands for AI chip testing but also anticipating future needs, Advantest positions its partners for success. As AI reshapes industries and expands the horizons of possibility, facing the future of technology together with Advantest ensures your technology is always ahead and fully equipped to leverage the immense potential of the AI era.

Read More

Posted in Top Stories

Advantest Celebrates 25th Anniversary of Industry-Leading V93000 SoC Test Platform

 

Earlier this year, Advantest celebrated the 25th anniversary of its flagship V93000 system-on-chip (SoC) test platform. The V93000 revolutionized the semiconductor test industry with its single scalable platform approach, enabled by its test processor-per-pin architecture, which has endured over four generations. As a testament to this endurance, the very first V93000 system installed is still in use at the customer site in Italy, alongside several recently purchased fourth-generation V93000 EXA Scale testers.

 Upon its introduction in July 1999, the V93000 “quickly became a true landmark, as most top-end SoC testers after it would copy the system’s architecture for many years to come,” according to the Chip History Center. Since adding the V93000 to its portfolio when Advantest acquired Verigy in 2011, Advantest engineers have continually enhanced and expanded the V93000 scalable platform to offer a wide range of compatible tester configurations – from small-footprint engineering systems to very high-pin-count wafer sort and final test systems for high-volume manufacturing. The V93000 provides the industry’s broadest application coverage, including high-performance computing, artificial intelligence, RF, automotive and industrial, to name a few. The accompanying chart enumerates Advantest’s many advancements to the V93000 test platform over the years.

TechInsights Vice Chair and Senior Fellow G. Dan Hutcheson has long followed Advantest and the trajectory of the V93000 platform. “The V93000’s long life is an icon for the virtuous cycle that can be created when a team of tool designers thinks beyond the challenges of the day to develop an architecture that can evolve to address as-yet-unknown future challenges. In the case of the V93000, its long life has benefited both Advantest and its customers,” Hutcheson observed. Advantest has been named to TechInsights’ annual 10 BEST list for each of the 36 years that the market intelligence firm’s Customer Satisfaction Survey has been in existence.

“Technology evolves at a lightning pace, so reaching the quarter-century mark is a milestone achievement that underscores the value of our single, scalable platform approach,” said Juergen Serrer, senior executive officer and chief technology officer, Advantest. “Partnering with our customers to stay ahead of technology trends has enabled us to ensure that the V93000 platform stands ready, with state-of-the-art capabilities, to accommodate today’s and tomorrow’s test challenges. We look forward to what the next 25 years have in store.” 

Click to enlarge

Read More

Posted in Top Stories

Advantest Ranked Third in Forbes JAPAN’s “100 Great Companies” Stakeholder Capitalism Ranking

By GO SEMI & Beyond Staff

In October, Advantest announced that it had earned third place in the stakeholder capitalism ranking published as a part of the “100 Great Companies” special feature in Forbes JAPAN, the Japanese edition of the global business magazine Forbes (December 2024 issue, published on October 24).

The “100 Great Companies” ranking was independently calculated by Forbes JAPAN with the cooperation of Sustainable Lab, which collected and analyzed sustainability-related data in five categories: natural capital, employees, shareholders, suppliers/communities, and customers/consumers. The analysis covered 1,644 companies on the Tokyo Stock Exchange Prime Market. Companies were scored on indicators in each of these categories, based on a relative evaluation of each industry, and the final score for each company was calculated by weighing the scores compared to the rest of the industry. 

Advantest defines sustainability as meeting the needs of the present without compromising the needs of future generations.

Advantest aims to be the most trusted and valued test solutions company in the semiconductor value chain. To achieve this vision, the company is committed to meeting the expectations and needs of its global stakeholders. Advantest strives to provide a balanced mix of economic and social values, contributing to global sustainable development while enhancing its corporate value in the medium to long term.

Read More

Posted in Top Stories

Advantest Ranks As THE BEST Assembly Test Equipment Supplier and the #1 Large Supplier of Chip Making Equipment in 2024 Customer Satisfaction Survey


In May, Advantest today announced it has once again received top ratings in the 2024 TechInsights
Customer Satisfaction Survey, capturing the No. 1 spot on this prestigious annual survey of global semiconductor companies for the fifth consecutive year.

Advantest has been rated on the 10 BEST list for each of the 36 years that the survey has existed. The survey ratings are based on direct customer feedback representing more than 60% of the world’s chip producers, which include integrated device manufacturers (IDMs), fabless companies, and outsourced assembly and test (OSAT) providers. 

According to TechInsights, Advantest has been named THE BEST supplier of assembly test equipment this year and every year since 2020. The company also RANKED 1st for the fifth consecutive year in the 10 BEST list of large suppliers of chip making equipment and was the only company to receive a five-star rating. Worldwide participants rated equipment suppliers among 14 categories based on three key factors: supplier performance, customer service, and product performance. The categories span a set of criteria including cost of ownership, quality of results, field engineering support, trust, and partnership.  

In the 2024 survey, Advantest achieved high customer ratings in the areas of Partnering, Recommended Supplier, Trust in Supplier, Technical Leadership, Commitment, Support After Sales, and Product Performance. 

The TechInsights annual Customer Satisfaction Survey is the only publicly available opportunity since 1988 for customers to provide feedback on suppliers of semiconductor equipment and subsystems. The 10 BEST, THE BEST, and RANKED 1st awards provide special recognition to suppliers rated highest by their customers. 

As a global provider of test solutions for SoC, logic and memory semiconductors, Advantest has long been the industry’s only ATE supplier to design and manufacture its own fully integrated suite of test-cell solutions comprising testers, handlers, device interfaces, and software – assuring the industry’s highest levels of integrity and compatibility. 

Read More

Posted in Top Stories

Automotive Semiconductors Require Integrated Test Solution


The automotive semiconductor test market is experiencing organic growth as chipmakers produce higher volumes of devices serving an array of automotive applications. In addition, the range of applications for automotive-grade semiconductors is evolving as the technology advances. Manufacturers of automated test equipment (ATE) are adapting to ensure their systems can handle devices ranging from display drivers for all-electronic dashboards to silicon-carbide (SiC) power transistors for traction inverters.

Market data

The automotive industry’s use of semiconductors is growing, with carmakers now consuming about 8% to 10% of all semiconductors produced. This percentage is expected to rise as electric vehicles increase market share and as automakers outfit their vehicles with increasingly sophisticated advanced driver-assistance systems (ADASs). The trend is further driven by the increasing software content in vehicles to achieve higher levels of autonomy and by the migration of semiconductors once used primarily in luxury brands into mid-range and low-end cars over time.

According to Gartner, the worldwide automotive semiconductor market will grow from $67.5 billion in 2022 to $155.4 billion in 2032, when software-defined vehicles will surpass 90% of the total vehicles produced (up from 4.1% in 2022), unit production share of vehicles with internal combustion engines will drop below 60%, and autonomous vehicles above level 2 will reach 33.5 million, up from 4.2 million in 2022. (Level 2 implies partial driving automation in which an ADAS can handle steering and speed control, but a human must remain behind the wheel and be prepared to take control at any time.)

The automotive industry also presents demand fluctuations. At the height of the corona virus pandemic, for example, demand was aggressive and supplies were tight. Now, however, demand has moderated, supply chains have filled, and automakers have established second sources for many of the chips they require.

Expanding applications areas

Semiconductors have traditionally served a few primary applications in the automotive space. They have found use in engine control as well as the control of gear boxes, power windows, power steering, power brakes, seat heaters, and door locks. Microcontroller units (MCUs) typically handled the control functions, and they managed the sensors and actuators arranged in a distributed or zone architecture throughout the vehicle interconnected via a controller-area network (CAN) bus. For this scenario, a semiconductor test system that could test consumer-grade MCUs could easily handle the automotive MCUs, whose key difference was to meet automotive quality standards and to operate over the automotive temperature range. In addition, the standard battery voltage was 12 V,  so most available power and analog tester resources would suffice.

Today, however, technology has evolved, and cars contain many different devices of heightened complexity and higher voltage ranges. The traditional functions such as engine and gearbox control remain, but their requirements have become more stringent as automakers pursue higher efficiencies and, for internal combustion engines, reduced emissions.

HPC moves into cars

In this new scenario, high-performance computing (HPC) typical of servers is moving into cars to implement increasingly sophisticated ADAS capabilities that perform safety/life-critical functions. To help implement the HPC functionality, automakers are moving from a distributed to a centralized architecture, which requires massive data transfer from sensors throughout the vehicle to a central electronic control unit (ECU) incorporating a high-performance microprocessor unit (MPU), which in turn necessitates high-speed automotive network interfaces. Automotive MPUs compared to consumer devices have to fulfill more strict quality aspects, so typically the test coverage is increased, outlier detection is applied, and a burn-in test flow gets introduced. In addition, testing across a wide temperature range from -40°C to +125/175°C is a must.

Voltages increase

Other factors resulting from the evolution of automotive electronics include the move from 12-V to 48-V architectures to power adjustable seats, windows, heaters, and even mild-hybrid traction motors. ATE makers are developing higher voltage and current instruments to test the devices that enable these higher voltage architectures.

Hybrid electric vehicles (HEVs) and fully electric vehicles (EVs) add further test considerations, requiring not just MCUs and other low-voltage components but battery-management-system (BMS) devices and high-voltage power modules as well. HEVs present some test challenges, but they operate at comparatively low voltages compared with EVs, and their battery-powered driving range is only about 40 miles. 

In contrast, EVs delivering hundreds of horsepower incorporate converter electronics that can operate up to 800 V. In this respect, vehicle electronics is starting to resemble the electronics used in railway, wind-turbine, and solar-park applications, requiring high-power test methods. For EV traction inverters, automakers are increasingly turning to SiC devices because of their high-voltage capabilities and efficiency—SiC devices can extend the battery range of a high-end EV by an estimated 7% to 15%. 

SiC technology can prove to be challenging. For example, operations such as regenerative braking can stress the SiC devices, and automakers need effective test equipment to ensure the devices work. Of particular importance is the short-circuit test, which requires fast turn-off of the device. The test system must protect the device under test, the handler, the probe card, and the tester itself throughout 100% device test.

Meeting traditional and new requirements

Semiconductor test companies must be able to cover the gamut of devices—including DRAM, flash memory, MCUs, display drivers, and power devices—for both traditional and new automotive applications. They can leverage their capabilities for commercial applications to automotive devices, where the key differences include temperature range.

Advantest offers a complete lineup of test solutions to handle all automotive semiconductor test applications. For traditional MCUs and similar components, the Advantest V93000 and T2000 platforms perform high-quality cost-effective test at high throughput. Both platforms feature a module-based architecture that enables flexible reconfiguration through the rearrangement of functional modules according to the application. Available modules offer digital, high-performance analog, and power-mixed-signal capabilities for testing a wide range of devices, including advanced automotive devices for ADAS applications.

In addition to requiring HPC MCUs, ADASs require inputs from cameras, radar, infrared, and other sensors, which versions of the T2000 and V93000 can accurately test. Other automotive devices requiring effective test solutions find use in applications ranging from airbag deployment and antilock braking, where test is vital due to safety aspects. The tests can be performed using mixed-signal versions of the T2000 or V93000. Similarly, RF configurations of those systems can test devices ranging from radar sensors to infotainment system components.

Vehicles will continue to incorporate a variety of other devices, including traditional MCUs for dashboard functions, with all-electronic dashboards also requiring display-driver integrated-circuit (DDIC) devices. Advantest’s T63xx Series testers address DDIC test requirements across the -40 to +175°C temperature range.

For devices that require higher voltages and power levels than standard car components, Advantest offers test capabilities up to 2,000 V or >150 A using ganged power VI setups. High accuracy is also an important parameter for testing the latest generation of BMS devices. BMSs perform battery charging, protection, cell balancing, and battery state-of-charge estimation. Battery management systems present significant test challenges as cell stacks present more cells per BMS chip and accurate voltage monitoring becomes increasingly important to maximize usable capacity and extend cell life. 

To support BMS test, ATE will require high-voltage capabilities up to 160 V and the ability to provide highly accurate force and measurement performance <100 µV at high floating voltages. Advantest offers suitable and cost-effective test solutions to address all modern BMS ICs meeting the above requirements. 

High-energy test

Test equipment for high-power devices such as those used in traction inverters requires even higher voltage, current, and power ratings. The market for high-energy (HE) test equipment used to be relatively small, focusing on railway, wind-turbine, and similar applications. However, the EV market is poised to expand the requirements for HE test equipment that can handle 400-V/800-V operation. 

To address this market, Advantest in June 2022 acquired Italy-based CREA, whose products can test power devices manufactured by global semiconductor companies. The acquisition helps Advantest address the growing market for power semiconductors for a variety of efficient power devices, including SiC and gallium-nitride (GaN) implementations, as governments and industry pursue net-zero carbon emissions across a variety of applications areas—most notably the automotive industry.

The CREA product lineup features a chamber for bare die test that keeps temperatures under control and that maintains airflow to prevent sparking that can occur at high voltages. The company developed proprietary technology (called CREA LSI™) for its contacting system to achieve very low stray inductance, which improves device testability. CREA PCI technology provides protection for the device, probe card, tester, and handler against potential damage during short-circuit test, thus improving OEE (overall equipment efficiency) in production. In addition, the product lineup addresses the challenges of running high-energy tests in parallel.

The CREA product line complements the T2000 and V93000 to enable Advantest to provide full test coverage of the gamut of automotive semiconductor devices. Table 1 shows the full range of Advantest test solutions for semiconductor devices used across all automotive functions.

Table 1. Testers and handlers for devices and applications

 

Conclusion

As an automotive industry partner for many years, Advantest recognizes that electronics use in vehicles is evolving. Traditional electronic devices continue to find use, but new innovative products ranging from MCUs for HPC to power modules for use in traction inverters are becoming increasingly important. In addition, increasing electrification drives the need for more semiconductor testing to address high-demand, high-growth, complex requirements. Advantest recognizes the ever-broader requirement to create universal solutions that are customizable with user-friendly software to meet specific application needs. Advantest is uniquely positioned to see new technologies coming and to develop the solutions necessary to test them accurately, quickly, and cost-effectively.

Read More