Pages Menu
Categories Menu

Posted in Top Stories

Preparing Solid-State Drives for Qualification Testing

By Vishal Devadiya, R&D Applications Engineer, Advantest

The market for solid-state drives (SSDs) remains strong. International Data Corp. (IDC) recently released figures forecasting a five-year compound annual growth rate (CAGR) of 15.1 percent in worldwide SSD unit shipments with SSD industry revenue expected to reach $33.6 billion in 2021. With SSD usage growing in PCs, consumer electronics and other applications, qualification testing has become increasingly critical as has finding ways to make the process faster and less costly so that SSDs can be brought to market more quickly.

Qualification testing, in essence, is a formally defined series of tests for evaluating a component or system to ensure its functionality, robustness and reliability prior to final approval and acceptance for release to production. Three types of qualification tests must be performed on SSDs before they enter the manufacturing phase:

  1. Engineering verification test (EVT) and
  2. Design verification test (DVT), both of which are run on a number of samples to check a SSD’s functionality, typically taking one to two weeks; and
  3. Reliability demonstration test (RDT), which is run on every device (not just samples) to check each SSD’s reliability and data integrity. RDT is run for a minimum of 1,000 hours and involves thousands of drives.

What is required to prepare an SSD for qualification testing? It is essential to make sure there are no functionality issues with the drive – most importantly, that it powers up correctly, and then that it works as expected in terms of running input/output (I/O) operations. If any issues arise, finding and fixing the root cause must be achieved as quickly as possible to avoid time-to-market (TTM) delays.

Several key issues can arise during the preparation process. Power-up failure, the most serious, typically happens because of a link training issue. This problem generally applies to PCIe drives because the PCIe protocol is quite complex with different layers in the architecture. Another issue is link retrain/drop. In this instance, the system may power up properly, but essentially becomes stuck in a non-ready loop shortly thereafter. A third type of problem is failure during I/O operations, which comprises three types of failures: write, read or data compare (write/read don’t match).

If one of these issues is discovered during preparation, the problem must be debugged. Traditional debugging methods are less than satisfactory. One way is to perform analysis on the available logs from the host and the drive, but the logs provide few details useful for analysis. The more typical approach is to use a protocol analyzer (PA) to capture bus trace and perform analysis to link issues (see Figure 1).

Figure 1. A PCIe analyzer on an engineering tester

But using a PA for this purpose has its own challenges:

  • The issue may not occur on a fixed slot number on the tester. If the test is run on a DVT trace during DVT and the issue occurs on the first device under test (DUT), the problem can only be captured if it is reproducible and consistent to that DUT slot.
  • If this does not work, it may be necessary to connect multiple PAs to avoid having to keep moving the PA from slot to slot. This creates a huge time sink and adds cost.
  • The large interposer required to connect the PA to the tester may temporarily change the signal properties, which can mask the issue from the tester and prevent its discovery.
  • Ongoing DVT testing on other DUTs cannot be interrupted or stopped in order to debug. EVT takes a week and RDT requires at least 1,000 hours. If an issue occurs within these time periods and a device in a specific slot experiences a failure, testing on all devices must be stopped so that the PA can be connected to that specific slot and then started up again following a period of downtime.
  • Thus, it becomes necessary to reproduce the issue. If there are insufficient or no data logs and a protocol trace must be captured, the test must be rerun. If it is not consistent, reproduction can be difficult, if not impossible. If a failure that happened at 120 hours initially does not happen again, the cause cannot be determined.
  • Additional considerations arise if the test is running under a thermal environment. Some SSD manufacturers run devices at a high temperature during RDT; if an issue arises, there is no way to connect a PA.

The bottom-line impact of these challenges is that it takes longer to identify the issue, resulting in delayed TTM and loss of revenue. One solution is to use the traffic capture tool created by Advantest and available as an add-on to the proven MPT3000 platform for system-level testing of SSDs.

The traffic capture tool enables transaction layer packet capture and link training/status state machine (LTSSM) capture, both of which are critical for debugging, as the following example illustrates. The tool also captures submission and completion queue information for each command and performs a command log dump to assess the number of commands issued and completed. Essentially, the traffic capture tool captures whatever is going on the bus between the FPGA-based test system and the DUTs.

The following figures illustrate how the traffic capture tool detects a power-up failure. In Figure 2, the link is good, but there is an error on the last line of code, indicating that the block device is not present. This means the device did not get ready within 120 seconds and thus timed out.

Figure 2. The drive linked up successfully, but did not get ready within the specified timeout.

Figure 3. The highlighted lines of code indicate that the SSD never got ready.

In Figure 3, the transaction layer packets (TLP) capture screens indicate that the device kept repolling and returning a value of 0 until hitting the 120-second mark. This means the device did not get ready (CSTS.RDY) and experienced a power-up failure. Once the failure is correctly identified, the information is relayed to the SSD manufacturer, whose challenge is to determine why the failure occurred.

When selected as an option, Advantest’s traffic capture tool runs continually in the background on the MPT3000 platform – essentially as an in-line process, capturing data that may be needed to rerun a test or reproduce an issue. Using the traffic capture tool on the tester allows the user to:

  • Run tests on all slots at the same time and capture the information required to debug issues;
  • Capture the traffic log at the time of the failure without having to reproduce the issue; and
  • Change the amount of logic in the design to capture more information if required. Because the test system is FPGA-based, it is easy to adjust the amount of logic for data capture.

The bottom-line benefit is earlier identification and resolution of device issues, resulting in the faster TTM that device makers require to keep pace with continuing market growth.

 

Read More

Posted in Top Stories

SmartShell – A Unique Software Interface for Design and Production

By Shu Li, Business Development Manager, Advantest America and Michael Braun, Product Manager, Advantest Europe

Before device test can take place on automated test equipment (ATE), device-specific test programs need to be developed for the target device and test system. As part of this process, a large amount of digital test content (patterns) gets translated from EDA (design/simulation) to ATE (test) format and needs to be debugged and characterized on the target tester.

In the mixed-signal (MX) and radio-frequency (RF) domain, scripts in various languages (tcl, Python, LabView, etc.) are often used for device bring-up and characterization on bench instruments, using early device samples on an evaluation board, either before ATE test program development starts or sometimes in parallel.

These often interactive scripts are not natively applicable to the production test system, so ATE users have developed proprietary solutions to bridge the gap between ‘bench type’ engineering test and production test environments. This enables leveraging some of the early device learnings for volume testing, or simply running the same test scripts in the two very different environments.

Both digital pattern validation and MX/RF script execution or conversion to ATE have potential for improvement and standardization, which will benefit both time-to-market (TTM) and time-to-quality (TTQ). This article will provide further details for both areas.

Digital (DFT) pattern bring-up and validation

Test patterns for scan, built-in self-test (BIST), functional, or other digital tests are typically created by design or DFT engineers in their design/simulation (EDA) environment and then handed over to the test department, where they are converted to the native ATE pattern format and integrated into the production test program. As part of this process, all patterns need to be validated and characterized on the tester, to make sure that they work as intended and have enough margin to guarantee a stable production test.

This pattern bring-up and validation process can be very time consuming because initial pattern generation and bring-up/validation is typically done in two very different environments: design/DFT/simulation versus test engineering. The design or DFT engineer creates the test patterns, but it is the test engineer’s responsibility to convert and run them against the actual silicon. If they don’t work, the test engineer will produce a log file with failing cycles for the pattern at hand and send it to the designer, whose task is then to identify the root cause of the failures in the simulation environment and to re-generate a corrected test pattern as needed. The corrected pattern needs to be translated and validated on the tester again, going back and forth between design and test. Often, design/DFT and test engineering are isolated from each other, in two different locations, communicating by email or FTP. The test engineer will thus notify the DFT engineer of discovered errors, but the latter may not get around to re-simulating the test patterns immediately. As a result, the test development process will incur some delays. The majority of patterns may pass, but some tricky ones can take months of re-spins, which will not help with getting working products to market quickly. This traditionally manual process – offline pattern generation, conversion and download, then emailing feedback about errors – is painful and time consuming (Figure 1).

If there were a way to execute and validate the generated patterns directly from the DFT/simulation environment without going through the full circle of pattern translation and fail cycle collection for every minor change, it would benefit all parties involved and reduce the pattern bring-up cycle time.

 

Figure 1. The debugging process involves lengthy communication between design and test, requires significant learning, and is prone to errors, leading to lengthy cycle times.

 

Scripts for mixed-signal/RF ‘bench instrument’ test on ATE

Mixed-signal and RF testing involves, besides some digital resources to set up and control the device, additional analog and RF instrumentation. In a lab environment, these resources are benchtop instruments such as oscilloscopes, spectrum analyzers, waveform generators and other tools.On the bench, each test requires specific control scripts for both the device and the various lab instruments involved. On the ATE system, fully integrated hardware instruments are used and controlled by standardized software components that are part of a generic test program. Often, bench instruments have a higher precision for specific tasks but are not as universal as ATE resources and cannot reach nearly the same throughput as ATE can deliver. For volume data collection in characterization, significant effort must be made to reach high throughput for data collection from many devices in a reasonable amount of time. Leveraging an ATE to do some tasks that are normally done in the lab/bench environment will speed up this data collection significantly and help to smooth the transition between design/bench and ATE. In this context, it would be very helpful to have a solution that allows moving back and forth seamlessly between the lab/bench environment and the ATE, without the need to convert bench-type scripts into ATE ‘native’ test programs. Running the exact same script(s) on the bench AND on the ATE system would help to improve correlation and TTM, while leveraging knowledge from both environments.

Figure 2. Time to market is a major issue when dealing with scripting for mixed-signal/RF devices. Producing a working customer sample can take 9-12 months, depending on chip size, type, etc.

Building a unified interface to bridge between design and test

What’s needed to address these challenges is an easy-to-use client/server environment that simplifies the communication between design and test to enable smart debugging. Advantest has developed a software option for its V93000 system-on-chip (SoC) test system that provides such a solution.

The newly developed SmartShell is a software environment for digital pattern validation and native script execution on ATE. The interface links directly between the DFT/bench environment and the V93000 tester, without the need to convert patterns and scripts to the tester’s ‘native’ data format. This allows fast pattern bring-up and characterization, enabling DFT engineers to validate their patterns faster and designs to be characterized more efficiently before they are released to production on the V93000 system. The block diagram in Figure 3 illustrates the dataflow process.

Figure 3. SmartShell data flow, from pattern/script generation to ATE and back.

With this new tool, porting different test content is made easier and straightforward, giving designers the freedom to incorporate various tasks into their test program without having to think about how to port them to an ATE system. Those that work best for the device being developed will be converted when it comes to manufacturing.

Engineers in both design and test can use the tool. The DFT engineer can run a simple script instructing the tool to check a new pattern or to loop over a number of patterns while varying conditions like voltage or frequency. He or she can access the results directly from their environment, without having to learn the native formats and software environment of the test system. The test engineer can run scripts originally generated for a totally different environment, and then quickly compare ATE results with results from the bench instrumentation. The command interface controls functionality and execution, and allows the results to be viewed in the engineer’s preferred format (see Figure 4).

Figure 4. The software package features an interface that is easy to use for design and test engineers alike.

SmartShell’s key capabilities include:

  • On-the-fly control of tester resources for digital, mixed-signal, RF and DC measurements
  • Fast internal pattern conversion, execution, and back-propagation of results
  • Ease of programming using any command-based script language
  • Accommodates customized script language using a bridge to its standard set of commands
  • Auto-recording/generation of setups for early production to ensure reusability
  • Compatible with SmarTest 7 (DFT/pattern validation only) and SmarTest 8 (Scripting)

Summary

SmartShell represents a solution to bridge the gap between design and test, delivering capabilities for pattern validation and script execution that are beneficial regardless of company size or device type. Early validation can be done in a well-contained design or bench environment, without the need to ‘learn the tester.’ The highly programmable SmartShell interface for the V93000 allows experts to best utilize their individual skillsets to debug devices effectively and efficiently in a highly integrated manner. The tool significantly shortens the turnaround times for high-quality test patterns and scripts, enabling device makers to achieve both faster TTM and lower overall cost of test.

Read More

Posted in Featured Products

W2BI’s New MLT1600 Device Test Automation Platform Addresses LTE, GSM and WCDMA Capabilities for the Burgeoning IoT and Smartphone Markets

W2BI, an Advantest Group company and a global leader in wireless device test automation products for the world’s top wireless operators, suppliers and labs, has introduced the MLT1600 cloud-enabled, device test automation tester as the newest member of its Micro Line Tester portfolio. The MLT1600 addresses the testing challenges of IoT products across multiple cellular radio technologies – such as GSM, WCDMA and LTE – with a 70-MHz to 6-GHz frequency range. With its portable design and small footprint, the MLT1600 leverages W2BI’s existing cloud-based test management platform to acquire on-demand test cases and publish test results as required across all test parameters.

During Verizon’s Test Fest in Bridgewater, N.J., W2BI demonstrated the MLT1600 with multiple-use case scenarios, including device connectivity, VoLTE, IMS roaming, data performance, UICC and more. The system software includes commercial-grade eNodeB, EPC, IMS and built-in Web-App-FTP servers to provide end-to-end network emulation in support of automated testing to accelerate time to market with increased capacity.

As mobile devices continue to grow in number, they are becoming increasingly sophisticated and able to perform complex functions across all industries and consumer markets. Cellular networks, which span the globe with standardized mobile access and interoperability, are seeing a proliferation of IoT devices and applications. To ensure that devices and services remain highly reliable, wireless operators around the world need to ensure that new technologies meet the demands and the security requirements of the expanding IoT ecosystem.

To support this growth, W2BI is simplifying the testing process by offering MLT products that use multi-level intuitive reporting to enable rapid troubleshooting and root cause analysis of test failures. The results can be published over the cloud to allow remote log analysis. In addition, MLT test equipment automation products are expandable, easy to use and offer shorter test cycles with more comprehensive analysis.

W2BI is continually pursuing ways of lowering the cost of testing and making the technology accessible to all groups across the mobile ecosystem. The company is constantly expanding their test automation scripts that support mobile operator-specific and industry standards-based test specifications, such as 3GPP, Global Certification Forum and CTIA, to accelerate and simplify the testing process.

 

Read More

Posted in Upcoming Events

Advantest’s VOICE 2018 Call for Papers Ends Nov. 17

VOICE, the annual Advantest Developer Conference, has issued an international call for papers for the 2018 event focusing on innovative test solutions for system-on-chip (SoC) and memory semiconductor devices, handler solutions, best practices and other hot topics. Paper submissions will be accepted through November 17, 2017.VOICE, the annual Advantest Developer Conference, has issued an international call for papers for the 2018 event focusing on innovative test solutions for system-on-chip (SoC) and memory semiconductor devices, handler solutions, best practices and other hot topics. Paper submissions will be accepted through November 17, 2017.

In 2018, VOICE will return to the host cities of San Diego, Calif. and Hsinchu, Taiwan on May 15-16 and on May 23, respectively, under the unifying theme “Measure the Connected World… and Everything in ItSM.”

Comprehensive learning and networking opportunities including technical presentations, a partners’ exposition and social gatherings continue to be the cornerstone of the VOICE program. Additionally, attendees can connect with Advantest product experts during the expanded Technology Kiosk Showcase at both conference locations. For the first time, VOICE will include a Best Kiosk Award that will be voted on by attendees.

Advantest’s VOICE 2018 call for papers focuses on six technology tracks:

  • Device/System Level Test — specific devices and system level test; MIMO; mmWave; next-generation embedded processors; broadband fiber to the home; autonomous vehicles IC test; multi-chip system-in-package
  • Internet of Things (IoT) — IoT enabling technologies; mobility, 5G, wireless, RF, wearables; smart cities/homes; sensors; tactile internet
  • Test Methodologies — supporting standards and protocols; solutions for the latest testing challenges
  • Hardware & Software Design Integration — utilizing the latest hardware or software features; test cells; new test system enhancements
  • Optimizing Productivity — cost of test; throughput; time-to-market; semiconductor “supercycle”
  • Hot Topics — new market drivers and future trends; artificial intelligence; smart data innovation; secure ID and cyber security; secure cloud; video streaming/telepresence

Unique sponsorship opportunities are also available for both locations. Please contact Amy Gold at amy.gold@advantest.com for more details.

Hotel reservation information is already available on the VOICE website, and registration opens in January. Visit https://voice.advantest.com to learn more.

Read More

Posted in Uncategorized

Advantest Taiwan CEO Guides with Balanced Leadership Approach

By GO SEMI & Beyond Staff

The subject of this issue’s Q&A is C.H. Wu, chairman, president and CEO of Advantest Taiwan. Mr. Wu has served in these roles since 2006, and in 2012, he was named an executive officer with Advantest Corporation. He holds a bachelor’s degree in electrical engineering from Taiwan’s Lunghwa University of Science and Technology and an MBA from Saginaw Valley State University in Michigan.

Q: You received your undergraduate degree in Taiwan, and your MBA in the U.S. How did you begin to develop your business acumen?

A: Growing up, many of my family were farmers, so I helped with farm work, such as rice seeding, weeding and husk drying. It was daunting to face those huge fields, but I soon realized that setting milestones and working steadily to completion is the best way to tackle any big job. This work ethic helped me to finish the farm work efficiently, and when I entered the job market, I continued to apply it to my efforts in the business world. I had trained myself to perform at a high level so that I could achieve excellent results in a timely manner.

Q: How did you come to join the semiconductor equipment industry?

A: A statement that has guided me in many of my life choices is “Know who you are and what you want.” After earning my degrees and working at big international firms such as Philips Electric and Motorola, I began to think about what mattered most to me in terms of moving forward in my career. I was familiar with the semiconductor industry, of course, and I chose to join Advantest Taiwan in 1990, just as the semiconductor equipment industry was beginning to boom. That decision opened up an exciting chapter in my life – one that has lasted more than two decades.

Q: What is your management philosophy?

A: I believe that task delegation must be balanced with ensuring cooperation and collaboration between company departments. For Advantest to remain successful over the long term, every member of the company must be invested at a personal level in helping sustain overall corporate growth. Our “2020 Project” cultivates in-house talents by inviting employees to propose, plan and implement innovative activities. We believe this program inspires technology advancements that benefit the company while reflecting Advantest’s core values and leadership position in the era of the Internet of Things.

We have implemented a number of projects in the last 25 years to recognize employees’ talents in different areas. Besides collaborating with academic institutions in skills development, we have combined our internal training program and job rotation mechanism to encourage employees to develop their strengths and make the most of their capabilities. A company’s success is not possible without each person’s individual contributions and unique talents. It’s therefore a leader’s responsibility to find ways to leverage the right people working in the right places doing the right things.

I also believe that career accomplishment isn’t the only measure of a person’s success. Good health, close friendships, and strong family relationships are all indispensable to a happy and well-balanced life.

Q: In what ways does Advantest differentiate itself from competitors?

A: I believe partnering with customers is absolutely essential. We must understand their challenges as well as they do in order to create a partnership that benefits each side. Just selling products won’t produce long-term relationships, and customers appreciate our efforts to ensure that we’re not just selling to them, but are helping them to achieve their long-term success goals.

Read More